TiDB 数据库的调度

  • 场景描述
  • 调度的需求
  • 调度的基本操作
  • 信息收集
  • 调度的策略
  • 调度的实现

PD (Placement Driver) 是 TiDB 集群的管理模块,同时也负责集群数据的实时调度。下面介绍一下 PD 的设计思想和关键概念。


1. 场景描述

TiKV 集群是 TiDB 数据库的分布式 KV 存储引擎,数据以 Region 为单位进行复制和管理,每个 Region 会有多个副本 (Replica),这些副本会分布在不同的 TiKV 节点上,其中 Leader 负责读/写,Follower 负责同步 Leader 发来的 Raft log。

需要考虑以下场景:

  • 为了提高集群的空间利用率,需要根据 Region 的空间占用对副本进行合理的分布。
  • 集群进行跨机房部署的时候,要保证一个机房掉线,不会丢失 Raft Group 的多个副本。
  • 添加一个节点进入 TiKV 集群之后,需要合理地将集群中其他节点上的数据搬到新增节点。
  • 当一个节点掉线时,需要考虑快速稳定地进行容灾。
    • 从节点的恢复时间来看
    • 如果节点只是短暂掉线(重启服务),是否需要进行调度。
    • 如果节点是长时间掉线(磁盘故障,数据全部丢失),如何进行调度。
    • 假设集群需要每个 Raft Group 有 N 个副本,从单个 Raft Group 的副本个数来看
    • 副本数量不够(例如节点掉线,失去副本),需要选择适当的机器的进行补充。
    • 副本数量过多(例如掉线的节点又恢复正常,自动加入集群),需要合理的删除多余的副本。
  • 读/写通过 Leader 进行,Leader 的分布只集中在少量几个节点会对集群造成影响。
  • 并不是所有的 Region 都被频繁的访问,可能访问热点只在少数几个 Region,需要通过调度进行负载均衡。
  • 集群在做负载均衡的时候,往往需要搬迁数据,这种数据的迁移可能会占用大量的网络带宽、磁盘 IO 以及 CPU,进而影响在线服务。

以上问题和场景如果多个同时出现,就不太容易解决,因为需要考虑全局信息。同时整个系统也是在动态变化的,因此需要一个中心节点,来对系统的整体状况进行把控和调整,所以有了 PD 这个模块。


2. 调度的需求

对以上的问题和场景进行分类和整理,系统要考虑:

2.1 作为一个分布式高可用存储系统

  • 副本数量不能多也不能少
  • 副本需要根据拓扑结构分布在不同属性的机器上
  • 节点宕机或异常能够自动合理快速地进行容灾

2.2 作为一个良好的分布式系统

  • 维持整个集群的 Leader 分布均匀
  • 维持每个节点的储存容量均匀
  • 维持访问热点分布均匀
  • 控制负载均衡的速度,避免影响在线服务
  • 管理节点状态,包括手动上线/下线节点

满足第一类需求后,整个系统将具备强大的容灾功能。满足第二类需求后,可以使得系统整体的资源利用率更高且合理,具备良好的扩展性。

为了满足这些需求,首先需要收集足够的信息,比如每个节点的状态、每个 Raft Group 的信息、业务访问操作的统计等;其次需要设置一些策略,PD 根据这些信息以及调度的策略,制定出尽量满足前面所述需求的调度计划;最后需要一些基本的操作,来完成调度计划。


3. 调度的基本操作

调度的基本操作指的是为了满足调度的策略。上述调度需求可整理为以下三个操作:

  • 增加一个副本
  • 删除一个副本
  • 将 Leader 角色在一个 Raft Group 的不同副本之间 transfer(迁移)。

刚好 Raft 协议通过 AddReplicaRemoveReplicaTransferLeader 这三个命令,可以支撑上述三种基本操作。


4. 信息收集

调度依赖于整个集群信息的收集,简单来说,调度需要知道每个 TiKV 节点的状态以及每个 Region 的状态。TiKV 集群会向 PD 汇报两类消息:

  • TiKV 节点信息
  • Region 信息

4.1 TiKV 节点信息

每个 TiKV 节点会定期向 PD 汇报节点的状态信息

TiKV 节点 (Store) 与 PD 之间存在心跳包,一方面 PD 通过心跳包检测每个 Store 是否存活,以及是否有新加入的 Store;另一方面,心跳包中也会携带这个 Store 的状态信息,主要包括:

  • 总磁盘容量
  • 可用磁盘容量
  • 承载的 Region 数量
  • 数据写入/读取速度
  • 发送/接受的 Snapshot 数量(副本之间可能会通过 Snapshot 同步数据)
  • 是否过载
  • labels 标签信息(标签是具备层级关系的一系列 Tag,能够感知拓扑信息)

通过使用 pd-ctl 可以查看到 Store 的状态信息。 TiKV Store 的状态具体分为 Up,Disconnect,Offline,Down,Tombstone。各状态的关系如下:
Store 状态关系

  • Up:表示当前的 Store 处于提供服务的状态。
  • Disconnect:当 PD 和 TiKV 的心跳信息丢失超过 20 秒后,该 TiKV 的状态会变为 Disconnect 状态。
  • Down:表示该 TiKV 与集群失去连接的时间已经超过了 max-store-down-time 指定的时间,默认 30 分钟。超过该时间后,对应的 TiKV 会变为 Down,并且开始在存活的 TiKV 上补足各个 Region 的副本。
  • Offline:当对某个 TiKV 通过 pd-ctl 进行手动下线操作,该 TiKV 会变为 Offline 状态,该状态只是 TiKV 下线的中间状态,处于该状态的 TiKV 会进行 leader 的 transfer 和 Region balance 操作,当 leader_count/region_count (在 pd-ctl 中获取) 均显示 transfer 或 balance 完毕后,该 TiKV 会由 Offline 状态变为 Tombstone 状态。在 Offline 状态下,禁止关闭该 TiKV 服务以及其所在的物理服务器。
  • Tombstone:表示该 TiKV 已处于完全下线状态,可以使用 remove-tombstone 接口安全地清理该状态的 TiKV。

4.2 Region 信息

每个 Raft Group 的 Leader 会定期向 PD 汇报 Region 的状态信息

每个 Raft Group 的 Leader 和 PD 之间存在心跳包,用于汇报这个 Region 的状态,主要包括下面几点信息:

  • Leader 的位置
  • Followers 的位置
  • 掉线副本的个数
  • 数据写入/读取的速度

PD 不断的通过这两类心跳消息收集整个集群的信息,再以这些信息作为决策的依据。

除此之外,PD 还可以通过扩展的接口接受额外的信息,用来做更准确的决策。比如当某个 Store 的心跳包中断的时候,PD 并不能判断这个节点是临时失效还是永久失效,只能经过一段时间的等待(默认是 30 分钟),如果一直没有心跳包,就认为该 Store 已经下线,再决定需要将这个 Store 上面的 Region 都调度走。

但是有的时候,是运维人员主动将某台机器下线,这个时候,可以通过 PD 的管理接口通知 PD 该 Store 不可用,PD 就可以马上判断需要将这个 Store 上面的 Region 都调度走。

5. 调度的策略

PD 收集了这些信息后,还需要一些策略来制定具体的调度计划。

5.1 一个 Region 的副本数量正确

当 PD 通过某个 Region Leader 的心跳包发现这个 Region 的副本数量不满足要求时,需要通过 Add/Remove Replica 操作调整副本数量。出现这种情况的可能原因是:

  • 某个节点掉线,上面的数据全部丢失,导致一些 Region 的副本数量不足
  • 某个掉线节点又恢复服务,自动接入集群,这样之前已经补足了副本的 Region
  • 的副本数量过多,需要删除某个副本
  • 管理员调整副本策略,修改了 max-replicas 的配置

5.2 一个 Raft Group 中的多个副本不在同一个位置

『同一个位置』不是『同一个节点』。一般情况下,PD 只会保证多个副本不落在一个节点上,以避免单个节点失效导致多个副本丢失。在实际部署中,还可能出现下面这些需求:

  • 多个节点部署在同一台物理机器上
  • TiKV 节点分布在多个机架上,希望单个机架掉电时,也能保证系统可用性
  • TiKV 节点分布在多个 IDC 中,希望单个机房掉电时,也能保证系统可用性

这些需求本质上都是某一个节点具备共同的位置属性,构成一个最小的『容错单元』,希望这个单元内部不会存在一个 Region 的多个副本。这个时候,可以给节点配置 labels 并且通过在 PD 上配置 location-labels 来指名哪些 label 是位置标识,需要在副本分配的时候尽量保证一个 Region 的多个副本不会分布在具有相同的位置标识的节点上。

5.3 副本在 Store 之间的分布均匀分配

由于每个 Region 的副本中存储的数据容量上限是固定的,通过维持每个节点上面副本数量的均衡,使得各节点间承载的数据更均衡。

5.4 Leader 数量在 Store 之间均匀分配

Raft 协议要求读取和写入都通过 Leader 进行,所以计算的负载主要在 Leader 上面,PD 会尽可能将 Leader 在节点间分散开。

5.5 访问热点数量在 Store 之间均匀分配

每个 Store 以及 Region Leader 在上报信息时携带了当前访问负载的信息,比如 Key 的读取/写入速度。PD 会检测出访问热点,且将其在节点之间分散开。

5.6 各个 Store 的存储空间占用大致相等

每个 Store 启动的时候都会指定一个 Capacity 参数,表明这个 Store 的存储空间上限,PD 在做调度的时候,会考虑节点的存储空间剩余量。

5.7 控制调度速度,避免影响在线服务

调度操作需要耗费 CPU、内存、磁盘 IO 以及网络带宽,需要避免对线上服务造成太大影响。PD 会对当前正在进行的操作数量进行控制,默认的速度控制是比较保守的,如果希望加快调度(比如停服务升级或者增加新节点,希望尽快调度),那么可以通过调节 PD 参数动态加快调度速度。


6. 调度的实现

PD 不断地通过 Store 或者 Leader 的心跳包收集整个集群信息,并且根据这些信息以及调度策略生成调度操作序列。每次收到 Region Leader 发来的心跳包时,PD 都会检查这个 Region 是否有待进行的操作,然后通过心跳包的回复消息,将需要进行的操作返回给 Region Leader,并在后面的心跳包中监测执行结果。

注意这里的操作只是给 Region Leader 的建议,并不保证一定能得到执行,具体是否会执行以及什么时候执行,由 Region Leader 根据当前自身状态来定。

Author

Lamber

Posted on

2022-01-07

Updated on

2022-01-08

Licensed under